Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge
نویسندگان
چکیده
In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.
منابع مشابه
Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community
Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any p...
متن کاملDynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances
Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM fo...
متن کاملImprovement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملImprovement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملThe Influence of Short Values of Hydraulic and Sludge Retention Time on Performance of a Membrane Bioreactor Treating Sunflower Oil Refinery Wastewater
In this work, the performance of organic pollutant removal, membrane fouling and sludge morphology in a submerged membrane bioreactor (MBR) treating sunflower oil refinery wastewater (SORW) containing high oleic content was studied during 52 days’ operation at short values of 18 h and 10 days for hydraulic retention time and sludge retention time, respectively. The removal efficiencies of chemi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017